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Quantum billiards have attracted much interest in many fields. People have made a lot of researches on the
two-dimensional (2D) billiard systems. Contrary to the 2D billiard, due to the complication of its classical
periodic orbits, no one has studied the correspondence between the quantum spectra and the classical
orbits of the three-dimensional (3D) billiards. Taking the cubic billiard as an example, using the periodic
orbit theory, we find the periodic orbit of the cubic billiard and study the correspondence between the
quantum spectra and the length of the classical orbits in 3D system. The Fourier transformed spectrum
of this system has allowed direct comparison between peaks in such plot and the length of the periodic
orbits, which verifies the correctness of the periodic orbit theory. This is another example showing that
semiclassical method provides a bridge between quantum and classical mechanics.

OCIS codes: 020.0020, 070.2590, 300.0300, 300.6300.

With the improvement of the ability to probe the
quantum-classical interface experimentally, the study of
the connections between the quantized energy eigenval-
ues of a bound state and the classical motions of the cor-
responding classical point particle has become more and
more important. Advances in lithographic techniques
and crystal growth have made it possible to produce very
small and clean devices, such as nanodevices. The elec-
tron in such devices is confined to two or more spatial
dimensions through gate voltage, which can be consid-
ered as a quantum billiard. Quantum billiards have at-
tracted much interest in many fields[1−5]. Subsequently,
many theoretical methods have been developed, such as
periodic orbit theory[6] which providing very direct con-
nections between the energy spectrum and the periodic
orbit of the classical system. Many researchers have fo-
cused their attention on the two-dimensional (2D) bil-
liard system, such as the square billiard, 2D triangular
billiard, circular or annular billiard, etc.[7−12]. As for
the three-dimensional (3D) billiard, none has given the
exact study. But as we all know, 3D billiard system is
more important than the 2D system, because most of
the devices are 3D other than 2D. In this paper, tak-
ing the cubic billiard as an example, using the periodic
orbit theory, we find the periodic orbit of the cubic bil-
liard and study the correspondence between the quantum
spectra and the length of the classical orbits. The Fourier
transformed spectrum of this system has allowed direct
comparison between peaks in such plot and the length
of the periodic orbits, which verifies the correctness of
these methods and shows the correspondence between
the quantum description and the classical description for
the 3D billiard system.

Considering a billiard moving in a 3D cubic potential
with the sides Lx = Ly = Lz = a, the potential is de-
scribed by

V (x, y, z) =

{

0, 0 < x ≤ a, 0 < y ≤ a, 0 < z ≤ a
∞ (other regions)

. (1)

The Schrödinger equation for the particle in this quan-
tum well is
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ψ(x, y, z) = Eψ(x, y, z). (2)

By solving the Schrödinger equation, we get the energy
eigenvalues and eigenfunctions of this system,
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, (3)

where nx, ny, nz = 1, 2, 3, · · · .
In the periodic orbit theory, one of the most important

physical quantities is the density of energy states. As
in Ref. [6], the energy state density can be split into a
smooth, slowly varying part ρ0(E) and some oscillatory
terms which are dominated by the classical periodic or-
bits whose actions, Sγ(E), correspond to periodic orbit
or closed paths. Specially, using the quantized energy
eigenvalues, labelled collectively as En, one has

∞
∑

n=1

δ(E − En) ≡ ρ(E)

= ρ0(E) +

∞
∑

p=1

∑

γ

ργ,p cos

[

p

(

Sγ(E)

h̄
− φγ

)]

, (4)

where each periodic orbit is characterized by a label γ =
1, · · · ,∞, p denotes all possible repetitions of such trajec-
tories (p = 1, · · · ,∞), and φγ is the phase modification
in the path integral.

For a 3D billiard system, i.e., a particle which is free
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inside an infinite well of arbitrary shape, with the area A,
circumference L, and ψ = 0 on the boundary, the smooth
part ρ0(E) can be written as[13]

ρ0(E) =
A

4π

(

2m

h̄2

)

− L

8π

√

2m

h̄2E
→ A

4π
− L

8π

1√
E
. (5)

For simplicity, we often set h̄2/2m = 1.
A particular way to visualize the possible classes of clas-

sical closed orbits is presented by geometrical method.
Make use of the fact that the 3D cube can be tiled with
a cubic lattice. Consider a specific cubic billiard, by re-
peated folding, any point in the original cubic can be
connected to the corresponding point in another “iden-
tified” partner and the resulting path inside a specific
cubic billiard can be obtained by repeatedly folding the
two cube until they overlap. Thus all the length of the
periodic orbits can be found by this symmetric method,
as shown in Fig. 1.

Taking the point (0, 0, 0) as an example, the corre-
sponding coordinates are

xp = p(2a), yq = q(2a), zr = r(2a), (6)

in which 2p, 2q, and 2r count the number of the hits on
the vertical, horizontal and the back-forth planes respec-
tively before it returns to the starting point. The length
of the classical orbit is

L(p, q, r) =
√

(xp − 0)2 + (yq − 0)2 + (zr − 0)2

= 2a
√

p2 + q2 + r2. (7)

Using this method, we find all the possible periodic
orbits with the length of L/a ≤ 40. Some of the periodic
orbits are given in Fig. 2. Figure 2(a) is the period orbit
with the length of L/a = 2, p = 1, q = 0, r = 0, which
shows that the orbit impacts with the vertical planes
twice before it returns to the starting point. Figure
2(b) is one with the length of L/a = 2.828 and p = 1,
q = 0, r = 1, which shows that the orbit impacts with
the vertical planes and back-forth planes twice before
it returns to the starting point · · · . Figure 2(d) is the
one with the length of L/a = 4.899, p = 2, q = 1,
r = 1, the orbit impacts with the horizontal planes and

Fig. 1. Geometrical description of the construction of the
path lengths corresponding to various periodic orbits in the
cubic billiard.

Fig. 2. Some classical periodic orbits of the cubic billiard with
the length of L/a ≤ 40. (a) p = 1, q = 0, r = 0; (b) p = 1,
q = 0, r = 1; (c) p = 1, q = 1, r = 1; (d) p = 2, q = 1, r = 1.

back-forth planes twice and the vertical planes four times
before it returns to the starting point. It is obvious that
the more the number of hits, the more complex the shape
of the orbits.

We are most interested in the oscillatory term of Eq.
(4). The quantized energies and the primitive actions are
given by

En =
h̄2k2

n

2m
→ k2

n,

Sγ(E = k2) = h̄kLγ , (8)

where kn is the wavenumber and Lγ is the length of the
primitive periodic orbit.

Using these formulas and Eq. (4), we write the equiv-
alent density of states in k-space (ignoring the unimpor-
tant factor of 1/2) as

∞
∑

n=1

δ(k − kn) ≡ ρ(k)

= ρ0(k) +

∞
∑

p=1

∑

γ

ργ,p cos[p(kLγ − φγ)]. (9)

By taking the Fourier transform of the above equation,
we have

ρ(L) =
∞
∑

n=1

∫ +∞

−∞

δ(k − kn)eikLdk =
∞
∑

n=1

eiknL, (10)

which can be evaluated by using the bound state energy
spectrum, actually the corresponding wavenumbers kn.

For the semi-classical oscillatory term, after taking the
Fourier transformation, we get

ρ(L) =

∞
∑

p=1

∑

γ

ργ,pδ(L− pLγ). (11)
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Table 1. Correspondence between the Positions of the Peaks in the Quantum Spectra and
the Lengths of the Classical Periodic Orbits

1 2 3 4 5 6 7 8

Position of the Peak of the Quantum Spectra 8.0 8.250 8.490 8.720 8.940 14.0 14.140 14.280

Length of the Classical Periodic Orbit 8.0 8.246 8.485 8.718 8.944 14.0 14.141 14.283

9 10 11 12 13 14 15 16

Position of the Peak of the Quantum Spectra 14.420 14.560 14.700 15.000 27.930 28.070 28.140 28.350

Length of the Classical Periodic Orbit 14.422 14.560 14.697 14.967 27.929 28.068 28.142 28.348

17 18 19 20 21 22 23 24

Position of the Peak of the Quantum Spectra 28.490 28.700 28.910 28.990 36.110 36.280 36.810 36.920

Length of the Classical Periodic Orbit 28.492 28.698 28.912 28.988 36.112 36.278 36.811 36.922

It exhibits a series of δ function like sharp peaks at
multiples of the lengths of the primitive closed paths,
i.e., at L = pLγ . Thus, if we evaluate the Fourier trans-
form ρ(L) of the wavenumber spectrum via Eq. (10), we
should find a series of sharp peaks corresponding to the
lengths of classical periodic orbits. For evaluating Eq.
(10) numerically, we use a finite number of wavevectors,
namely

ρN (L) =

N
∑

n=1

eiknL. (12)

For the 3D cubic billiard system, the wavenumbers are

kn = k(nx,ny,nz) =

√

2m

h̄2 E(nx, ny, nz)

=
π

a

√

n2
x + n2

y + n2
z. (13)

Using Eq. (12), we calculate the Fourier transformed
quantum spectra ρN (L) (using the lowest eigenvalues

N = 10000). Figure 3 plots the results of |ρN(L)|2 versus
L/a ≤ 40 (for simplicity, we set a = 4.0). In Table 1, we
list part of the positions of peaks in Fig. 3 and the lengths
of the classical periodic orbits. The results show the clas-
sical result and the quantum result agree well with each
other, which verifies the correctness of the periodic orbit
theory. It also shows the correspondence of the quantum

Fig. 3. Fourier transformed quantum spectra |ρN (L)|2 of the
3D cubic billiard (using the lowest eigenvalues of N = 10000)
versus L/a ≤ 40.

Fig. 4. Fourier transformed quantum spectra |ρN(L)|2 of the
2D square billiard (using the lowest eigenvalues of N = 3000)
versus L/a ≤ 40.

and classical description of the 3D cubic billiard system.
From Fig. 3 we can see that when the length of the pe-
riodic orbit is short, the number of the periodic orbits
is small, and so does the peak of the quantum spectra;
however with the increase of the length of the orbits,
the number of the periodic orbit increases greatly and
more and more peaks appear. However, if we limit the
length of the orbit to a small region, we will find that
each peak corresponds to one periodic orbit. In order to
show this clearly, we give an inset plot in each figure. In
Fig. 4, we plot the Fourier transformed quantum spectra
|ρN (L)|2 of the 2D square billiard using the lowest eigen-
values N = 3000 versus L/a ≤ 40. From Figs. 3 and 4,
we found that the quantum spectra of the cubic billiard
are more complex than that of the square billiard, be-
cause the number of the periodic orbits in cubic billiard
is much more than that in the square billiard within the
same length of the orbits.

In conclusion, by solving the Schrödinger equation of
the 3D billiard, we get the energy eigenvalues and eigen-
functions of this system. Using periodic orbit theory,
we find the periodic orbits of this system within a cer-
tain length. Then we calculate the quantum spectra of
the 3D billiard. In order to show the correspondence
between the quantum spectra and the classical periodic
orbits, we make a Fourier transformation to the spectra.
The Fourier transformed spectrum of this system has al-
lowed direct comparison between peaks in such plot and
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the length of the periodic orbits, which verifies the cor-
rectness of the periodic orbit theory in 3D systems. It
also shows the correspondence between the quantum de-
scription and the classical description for the same sys-
tem. The correspondence we have studied is quite general
and should also exist in other systems, and it may shed
light on the transport property of semiconductor, which
depends on the shape of the potential well[14,15]. In the
future, we will use the quantum Gaussian wave packet
method[16] and other methods to analyze the dynamics
of this system.
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